Statistical modeling for real-time pore pressure prediction from predrill analysis and well logs
نویسندگان
چکیده
منابع مشابه
Pore throat size characterization of carbonate reservoirs by integrating core data, well logs and seismic attributes
Investigation of pore system properties of carbonate reservoirs has an important role in evaluating the reservoir quality and delineating high production intervals. The current study proposes a three-step approach for pore throat size characterization of these reservoirs, by integrating core data, well logs and 3D seismic volume. In this respect, first the pore throats size was calculated using...
متن کاملJoint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis
Here in, an application of a new seismic inversion algorithm in one of Iran’s oilfields is described. Stochastic (geostatistical) seismic inversion, as a complementary method to deterministic inversion, is perceived as contribution combination of geostatistics and seismic inversion algorithm. This method integrates information from different data sources with different scales, as prior informat...
متن کاملA Framework for Real-time Crash Prediction: Statistical Approach Versus
The attempts to predict crashes on freeways through statistical modeling involving capacity driven measures of traffic flow (e.g., AADT) and road geometry have spanned for more than two decades. However, success in crash prediction involving these static data has so far been limited. In recent times, some researchers made efforts to accommodate the weather conditions and seasonal effects to bet...
متن کاملStatistical Analysis and Modeling (Forecasting) of the Temperature Time Series of Ahvaz Metropolis
Forecasting of temperature and precipitation can be efficiently used in decision making and optimal use of water resources. Studies in Iran have indicated a significant increase in annual temperature. This issue should be further researched in the Ahvaz region because it is the population hub in the southwest of Iran and the pole of irrigation networks and traditional agricultural land ...
متن کاملLearning probabilistic real-time automata from multi-attribute event logs
The growing number of time-labeled datasets in science and industry increases the need for algorithms that automatically induce process models. Existing methods are capable of identifying process models that typically only work on single attribute events. We propose a new model type and its corresponding algorithm to address the problem of mining multi-attribute events, meaning that each event ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: GEOPHYSICS
سال: 2019
ISSN: 0016-8033,1942-2156
DOI: 10.1190/geo2018-0168.1